Continuity and Differentiability  MCQs

MCQs of Continuity and Differentiability

Showing 21 to 30 out of 130 Questions
21.
ddx xx=_____ . (x<0)
(a) 2x
(b) -2x
(c) x
(d) 0
Answer:

Option (b)

22.
If x=2t1+t2, y=1-t21+t2, then dydx= _____ .
(a) 2t21-t2
(b) 2t1+t2
(c) 2t
(d) -2t1-t2
Answer:

Option (d)

23.
ddx exlogx = _____ 
(a) xx(1+logx)
(b) xx
(c) 1 + logx
(d) xx-1
Answer:

Option (a)

24.
ddxtan -1x1 + tan -1x w.r.t. tan -1x = _____
(a) 11 + tan -1x 
(b) 11 + tan -1x2 
(c) 11 + x2 
(d) -11 + x2 
Answer:

Option (b)

25.
If x = at2 , y = 2at, then d2ydx2
(a) -1t2
(b) 1t2
(c) -12at3
(d) 12at3
Answer:

Option (c)

26.
ddxcot-11+x2 - 1x = _____ ( x  R - {0} )
(a) 11+x2
(b) 12(1+x2)
(c) 21+x2
(d) - 11+x2
Answer:

Option (b)

27.
d2xdy2 = _____
(a) 1d2ydx2 
(b) 1dydx2
(c) - 1dydx2
(d) - 1dydx3d2ydx
Answer:

Option (d)

28.
For the curve f(x) = (x - 3)2 , applying mean value theorem on [2, 4] the tangent at _____ is parallel to the chord joining A(2, 1) and B(4, 1).
(a) (1, 0)
(b) (4, 3)
(c) (2, 3)
(d) (3, 0)
Answer:

Option (d)

29.
The value of c for the mean-value theorem for f(x) = x3 in [-1 , 1] is _____ .
(a) ±13
(b) ±3
(c) ±1
(d) 0
Answer:

Option (a)

30.
If we apply the Rolle's theorem to f(x) = exsinx   x∈ [0, π], then c = ______ .
(a) 3π4
(b) 5π4
(c) π4
(d) 7π4
Answer:

Option (a)

Showing 21 to 30 out of 130 Questions