Applications of Derivatives  MCQs

MCQs of Applications of Derivatives

Showing 31 to 40 out of 266 Questions
31.
The equation of normal to 3x2-y2=8 at (2, -2) is_____
(a) x+2y=-2
(b) x-3y=8
(c) 3x+y=4
(d) x+y=0
Answer:

Option (b)

32.
The angle made by the tangent with the +ve direction of X−axis to  x=etcost, y=etsint at t=π4 is _____
(a) π4
(b) π2
(c) 0
(d) π3
Answer:

Option (b)

33.
The equation of tangent to y=cosx at (0, 1) is _____
(a) x=0
(b) y=0
(c) x=1
(d) y=1
Answer:

Option (d)

34.
The equation of normal to y=sinx at π2, 1 is _____
(a) x=1
(b) x=0
(c) y=π2
(d) x=π2
Answer:

Option (d)

35.
At _____ on circle x2+y2-2x-3 = 0, the tangent is horizotal.
(a) (0, ±3)
(b) (2, ±3)
(c) (1, 2), (1, -2)
(d) (3, 0)
Answer:

Option (c)

36.
The point on y2=x where tangent makes angle of measure π4 with the positive X-axis is ______
(a) 14, 12
(b) 2, 1
(c) 0, 0
(d) -1, 1
Answer:

Option (a)

37.
A cone with its height equal to the diameter of the base is expanding in volume at the rate of 50 cm3/sec. If the base has area 1 m2, the radius is increasing at the rate _____
(a) 0.0025 cm/sec
(b) 0.25 cm/sec
(c) 1 cm/sec
(d) 4 cm/sec
Answer:

Option (a)

38.
The rate of increaing of f(x)=x3-5x2+5x+25 is twice the rate of increase of x for x = _____.
(a) -3, -13
(b) 3, 13
(c) -3, 13
(d) 3, -13
Answer:

Option (b)

39.
The radius of a cone increases at the rate of 4 cm/sec and the altitude is decreasing at the rate of 3 cm/sec. When the radius is 3 cm and altitude is 4 cm, the rate of change of lateral surface is _____.
(a) 30π cm2/sec
(b) 10 cm2/sec
(c) 20π cm2/sec
(d) 22π cm2/sec
Answer:

Option (c)

40.
The rate of change of surface area of a sphere w.r.t. radius is _____
(a) 8π (diameter)
(b) 3π (diameter)
(c) 4π (radius)
(d) 8π (radius)
Answer:

Option (d)

Showing 31 to 40 out of 266 Questions