Applications of Derivatives  MCQs

MCQs of Applications of Derivatives

Showing 71 to 80 out of 266 Questions
71.
fx=x2+ax+5 is increasing on (2, 3), then minimum value of a ∈ R is _____
(a) 4
(b) -2
(c) -4
(d) 2
Answer:

Option (c)

72.
fx=0,x=0x-3,x>0 then f(x) is
(a) increasing for x0
(b) strictly increasing for x > 0
(c) strictly increasing for x = 0
(d) not continuous at x = 0 so it is not increasing for x > 0
Answer:

Option (b)

73.
If fx=λsinx+6cosx2sinx+3cosx is strictly increasing function, then
(a) λ > 1
(b) λ < 1
(c) λ < 4
(d) λ >4
Answer:

Option (d)

74.
Function fx=1-e-x22 is
(a) increasing for all x ∈ R
(b) decreasing for all x ∈ R
(c) decreasing for x < 0 and increasing for x > 0
(d) increasing for x < 0 and decreasing for x > 0
Answer:

Option (c)

75.
If fx=xe1-x then f is _____
(a) strictly increasing function in 12,2
(b) increasing function in (0, ∞)
(c) decreasing function in (0, 2)
(d) strictly decreasing function in (1, ∞)
Answer:

Option (d)

76.
If fx=cosx+bx+c is increasing function on R then,
(a) b1
(b) b1
(c) b0
(d) b0
Answer:

Option (b)

77.
If line ax + by + c = 0 is tangent to curve xy = 4 then _____
(a) a > 0,b < 0
(b) a < 0,b > 0
(c) a ≤ 0,b < 0
(d) a < 0,b < 0
Answer:

Option (d)

78.
Distance of normal at x = 0 of y=e2x+x2 from origin is _____
(a) 2
(b) 23
(c) 25
(d) 15
Answer:

Option (c)

79.
If curves x2a2+y212=1 and y3 = 8x intersect orthogonaly then a2 = _____
(a) 16
(b) 12
(c) 8
(d) 4
Answer:

Option (d)

80.
Length of sub-interval at t-point of curve x=at+sint, y=a1-cost is _____
(a) asint
(b) 2asint2
(c) 2asin3t2sect2
(d) 2asint2tant2
Answer:

Option (c)

Showing 71 to 80 out of 266 Questions