Applications of Derivatives  MCQs

MCQs of Applications of Derivatives

Showing 51 to 60 out of 266 Questions
51.
The minimum value of secx, x2π3, π is _____.
(a) 1
(b) -2
(c) 2
(d) π
Answer:

Option (b)

52.
The maximum value of cosecx, xπ6,π3 is_____.
(a) 2
(b) 23
(c) π6
(d) π3
Answer:

Option (a)

53.
If f is decreasing in [a,b], its minimum and maximum values are respectively _____ and _____.
(a) f(a) and f(b)
(b) f(b) and f(a)
(c) fa + b2 and f(a)
(d) fb and fa + b2
Answer:

Option (b)

54.
The side of an equilateral triangle expands at the rate of 3  cm/sec. When the side is 12 cm,the rate of increase of its area is_____.
(a) 12 cm2/sec
(b) 18 cm2/sec
(c) 33 cm2/sec
(d) 10 cm2/sec
Answer:

Option (b)

55.
At_____ on circle x2+y2-2x-3=0, the tangent is horizontal.
(a) (0, ±3)
(b) (2, ±3)
(c) (1, 2), (1, -2)
(d) (3, 0)
Answer:

Option (c)

56.
A particle moving in a straight line. has velocity v at any point, where v2 = 2 - 3x.If x represents its distance from a fixed point at time t then, acceleration of particle is _____
(a) constant
(b) zero
(c) variable
(d) undefined
Answer:

Option (a)

57.
When x= 3 then rate of change of w.r.t. is _____
(a) -125
(b) 65
(c) -65
(d) 3
Answer:

Option (a)

58.
The rate of increase of the diagonal of a square is 0.5 cm/sec. When area of square is 400 cm2 then the rate of change of its area is _____ cm2/sec.
(a) 52
(b) 1102
(c) 102
(d) 102
Answer:

Option (d)

59.
If displacement x of particle at a time t is x = At2 + Bt + c(where A, B and C are constant) and velocity is v then, 4Ax - v2
(a) 4AC + B
(b) 4AC - B
(c) 2AC - B
(d) 2AC + B
Answer:

Option (b)

60.
The rate of increase of volume of sphere w.r.t. its surface area S is _____
(a) -12Sπ
(b) -14Sπ
(c) 14Sπ
(d) 12Sπ
Answer:

Option (c)

Showing 51 to 60 out of 266 Questions