Applications of Derivatives  MCQs

MCQs of Applications of Derivatives

Showing 131 to 140 out of 266 Questions
131.
Let C be a curve given by y=1+4x-3, x>34 If P is a point on C, such that the tangent at P has slope 23, then a point through which the normal at P passes, is :
(a) (1, 7)
(b) (3, -4)
(c) (4, -3)
(d) (2, 3)
Answer:

Option (a)

132.
Let fx=sin4x+cos4x, Then f is increasing function in the interval :
(a) 5π8, 3π4
(b) π2, 5π8
(c) π4, π2
(d) 0, π4
Answer:

Option (c)

133.
log sinx is _____ function on 0, π3
(a) increasing
(b) decreasing
(c) constant
(d) impossible
Answer:

Option (b)

134.
Equation of the tangent to xn + yn = 2 at point (1, 1) is _____ .
(a) x + y - 2 = 0
(b) x - y + 2 = 0
(c) x - y - 2 = 0
(d) x + y + 2 = 0
Answer:

Option (a)

135.
Slope of a tangent to y = x2 - 4x + 5 at the point _____ is 4.
(a) (4, 5)
(b) (5, 4)
(c) (-4, 5)
(d) (4, -5)
Answer:

Option (a)

136.
Rate of increase of the area of a square w.r.t its perimeter is _____ (l = length of a side of the square).
(a) l4
(b) l2
(c) 4 l
(d) l
Answer:

Option (b)

137.
If kx3 - 9x2 + 9x + 3 is an increasing function on R then _____ .
(a) k > 4
(b) k > 3
(c) k ≤ 2
(d) k < 3
Answer:

Option (b)

138.
If 3x - y = 1 is an equation of a tangent to a curve y = ax2 + bx at (1, 2) then _____ .
(a) a = 1, b = -1
(b) a = 2, b = -1
(c) a = 2, b = 3
(d) a = 1, b = 1
Answer:

Option (d)

139.
Water is falling into a cylinder of radius 1 m at the rate of 1 m3/min. Then rate of increase of height of the surface is _____
(a) 1π m/min
(b) 1 m/min
(c) π m/min
(d) π2
Answer:

Option (a)

140.
A line xa+yb=1 touches the curve y=be-xa at a point _____
(a) a,ba
(b) (-a, ba)
(c) a,ab
(d) None of these
Answer:

Option (d)

Showing 131 to 140 out of 266 Questions